Robert A. Millikan | |
---|---|
Born | Robert Andrews Millikan 22 March 1868 Morrison, Illinois, USA |
Died | December 19, 1953 San Marino, California, USA |
(aged 85)
Nationality | United States |
Fields | Physics |
Institutions | University of Chicago California Institute of Technology |
Alma mater | Oberlin College Columbia University |
Doctoral advisor | Michael I. Pupin Albert Michelson |
Doctoral students | William Pickering Robley D. Evans Harvey Fletcher Chung-Yao Chao |
Known for | Charge of the electron Advanced cosmic ray physics |
Notable awards | Nobel Prize in Physics (1923) Franklin Medal (1937) |
Robert A. Millikan (22 March 1868 – 19 December 1953) was an American experimental physicist, and Nobel laureate in physics for his measurement of the charge on the electron and for his work on the photoelectric effect. He served as president of Caltech from 1921 to 1945.
Contents |
Millikan went to high school in Maquoketa, Iowa. Millikan received a Bachelor's degree in the classics from Oberlin College in 1891 and his doctorate in physics from Columbia University in 1895 – he was the first to earn a Ph.D. from that department.
Millikan's enthusiasm for education continued throughout his career, and he was the coauthor of a popular and influential series of introductory textbooks,[1] which were ahead of their time in many ways. Compared to other books of the time, they treated the subject more in the way in which it was thought about by physicists. They also included many homework problems that asked conceptual questions, rather than simply requiring the student to plug numbers into a formula.
In 1902 he married Greta Ervin Blanchard. They had three sons - Clark Blanchard, Glenn Allen, and Max Franklin.
Starting in 1909, while a professor at the University of Chicago, Millikan worked on an oil-drop experiment in which they measured the charge on a single electron. Professor Millikan took sole credit, in return for Harvey Fletcher claiming full authorship on a related result for his dissertation.[2] Millikan went on to win the 1923 Nobel Prize for Physics, in part for this work, and Fletcher kept the agreement a secret until his death.[3] After a publication on his first results in 1910,[4] contradictory observations by Felix Ehrenhaft started a controversy between the two physicists.[5] After improving his setup he published his seminal study in 1913.[6]
The elementary charge is one of the fundamental physical constants and accurate knowledge of its value is of great importance. His experiment measured the force on tiny charged droplets of oil suspended against gravity between two metal electrodes. Knowing the electric field, the charge on the droplet could be determined. Repeating the experiment for many droplets, Millikan showed that the results could be explained as integer multiples of a common value (1.592 × 10−19 coulomb), the charge on a single electron. That this is somewhat lower than the modern value of 1.602 176 53(14) x 10−19 coulomb is probably due to Millikan's use of an inaccurate value for the viscosity of air.
Although at the time of Millikan's oil-drop experiments it was becoming clear that there exist such things as subatomic particles, not everyone was convinced. Experimenting with cathode rays in 1897, J.J. Thomson had discovered negatively charged 'corpuscles', as he called them, with a charge to mass ratio 1840 times that of a hydrogen ion. Similar results had been found by George FitzGerald and Walter Kaufmann. Most of what was then known about electricity and magnetism, however, could be explained on the basis that charge is a continuous variable; in much the same way that many of the properties of light can be explained by treating it as a continuous wave rather than as a stream of photons.
The beauty of the oil-drop experiment is that as well as allowing quite accurate determination of the fundamental unit of charge, Millikan's apparatus also provided a 'hands on' demonstration that charge is actually quantized. The General Electric Company's Charles Steinmetz, who had previously thought that charge is a continuous variable, became convinced otherwise after working with Millikan's apparatus.
There is some controversy over selectivity in Millikan's use of results from his second experiment measuring the electron charge. This has been discussed by Allan Franklin[7], a former high-energy experimentalist and current philosopher of science at the University of Colorado. Franklin contends that Millikan's exclusions of data do not affect the final value of the charge obtained, but that Millikan's substantial "cosmetic surgery" reduced the statistical error. This enabled Millikan to give the charge of the electron to better than one half of one percent; in fact, if Millikan had included all of the data he discarded, the error would have been within 2%. While this would still have resulted in Millikan having measured the charge of e− better than anyone else at the time, the slightly larger uncertainty might have allowed more disagreement with his results within the physics community, which Millikan likely tried to avoid. David Goodstein argues that Millikan's statement, that all drops observed over a sixty-day period were used in the paper, was clarified in a subsequent sentence which specified all "drops upon which complete series of observations were made". Goodstein attests that this is indeed the case and notes that five pages of tables separate the two sentences.[8]
When Einstein published his seminal 1905 paper on the particle theory of light, Millikan was convinced that it had to be wrong, because of the vast body of evidence that had already shown that light was a wave. He undertook a decade-long experimental program to test Einstein's theory, which required building what he described as "a machine shop in vacuo" in order to prepare the very clean metal surface of the photo electrode. His results confirmed Einstein's predictions in every detail, but Millikan was not convinced of Einstein's interpretation, and as late as 1916 he wrote, "Einstein's photoelectric equation... cannot in my judgment be looked upon at present as resting upon any sort of a satisfactory theoretical foundation," even though "it actually represents very accurately the behavior" of the photoelectric effect. In his 1958 Book of discoveries on science experiments, however, he simply declared that his work "scarcely permits of any other interpretation than that which Einstein had originally suggested, namely that of the semi-corpuscular or photon theory of light itself."
Since Millikan's work formed some of the basis for modern particle physics, it is ironic that he was rather conservative in his opinions about 20th century developments in physics, as in the case of the photon theory. Another example is that his textbook, as late as the 1927 version, unambiguously states the existence of the ether, and mentions Einstein's theory of relativity only in a noncommittal note at the end of the caption under Einstein's portrait, stating as the last in a list of accomplishments that he was "author of the special theory of relativity in 1905 and of the general theory of relativity in 1914, both of which have had great success in explaining otherwise unexplained phenomena and in predicting new ones." He is also credited with measuring the value of Planck's constant by using photoelectric emission graphs of various metals.
In 1917, solar astronomer George Ellery Hale convinced Millikan to begin spending several months each year at the Throop College of Technology, a small academic institution in Pasadena, California that Hale wished to transform into a major center for scientific research and education. A few years later Throop College became the California Institute of Technology (Caltech), and Millikan left the University of Chicago in order to become Caltech's "chairman of the executive council" (effectively its president). Millikan would serve in that position from 1921 to 1945. At Caltech most of his scientific research focused on the study of "cosmic rays" (a term which he coined). In the 1930s he entered into a debate with Arthur Compton over whether cosmic rays were composed of high-energy photons (Millikan's view) or charged particles (Compton's view). Millikan thought his cosmic ray photons were the "birth cries" of new atoms continually being created by God to counteract entropy and prevent the heat death of the universe. Compton would eventually be proven right by the observation that cosmic rays are deflected by the Earth's magnetic field (and so must be charged particles).
Robert Millikan was Vice Chairman of the National Research Council during World War I. During that time, he helped to develop anti-submarine and meteorological devices. He received the Chinese Order of Jade. In his private life, Millikan was an enthusiastic tennis player. He was married and had three sons, the eldest of whom, Clark B. Millikan, became a prominent aerodynamic engineer. Another son, Glenn, also a physicist, married the daughter (Clare) of George Leigh Mallory of "Because it's there" Mount Everest fame. Glenn was killed outside Oak Ridge, TN in a climbing accident in 1947.[9]
In his later life he became interested in the relationship between Christian faith and science, his own father having been a minister. He dealt with this in his Terry Lectures at Yale in 1926–7, published as Evolution in Science and Religion.[10] A more controversial belief of his was eugenics. This led to his association with the Human Betterment Foundation and his praising of San Marino, California for being "the westernmost outpost of Nordic civilization . . . [with] a population which is twice as Anglo-Saxon as that existing in New York, Chicago or any of the great cities of this country." [11]
In 1938, he wrote a short passage to be placed in the Westinghouse Time Capsules.[12]
At this moment, 22 August 1938, the principles of representative ballot government, such as are represented by the governments of the Anglo-Saxon, French, and Scandinavian countries, are in deadly conflict with the principles of despotism, which up to two centuries ago had controlled the destiny of man throughout practically the whole of recorded history. If the rational, scientific, progressive principles win out in this struggle there is a possibility of a warless, golden age ahead for mankind. If the reactionary principles of despotism triumph now and in the future, the future history of mankind will repeat the sad story of war and oppression as in the past.
Millikan died of a heart attack at his home in San Marino, California in 1953 at age 85, and was interred in the "Court of Honor" at Forest Lawn Memorial Park Cemetery in Glendale, California.
Millikan Middle School (formerly Millikan Junior High School) in the suburban Los Angeles neighborhood of Sherman Oaks is named in his honor, as is Robert A. Millikan High School in Long Beach, California. The Millikan Library, the tallest building on the Caltech campus is also named for him. Additionally, a major street through the Tektronix campus in Portland, Oregon, is named after him, with the Millikan Way (MAX station), a station on Portland, Oregon's MAX Blue Line named after the street.
On January 26, 1982, he was honored by the United States Postal Service with a 37¢ Great Americans series (1980-2000) postage stamp.
"There is no likelihood man can ever tap the power of the atom. The glib supposition of utilizing atomic energy when our coal has run out is a completely unscientific Utopian dream, a childish bug-a-boo. Nature has introduced a few fool-proof devices into the great majority of elements that constitute the bulk of the world, and they have no energy to give up in the process of disintegration." - 1928 at the Chemists' Club (New York)
|
|
|
|